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SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

A second-order linear differential equation has the form

m PO+ o) 9+ Ry = G

where P, Q, R, and G are continuous functions. Equations of this type arise in the study of
the motion of a spring. In Additional Topics: Applications of Second-Order Differential
Equations we will further pursue this application as well as the application to electric

circuits.

In this section we study the case where G(x) = 0, for all x, in Equation 1. Such equa-
tions are called homogeneous linear equations. Thus, the form of a second-order linear

homogeneous differential equation is

d?y

[2] P(x) dx?

+ () j—ﬁ Ry =0

If G(x) # 0 for some x, Equation 1 is nonhomogeneous and is discussed in Additional

Topics: Nonhomogeneous Linear Equations.

Two basic facts enable us to solve homogeneous linear equations. The first of these says
that if we know two solutions y; and y, of such an equation, then the linear combination

y = c1y1 t ¢y, is also a solution.

tion (2) and ¢, and ¢, are any constants, then the function

y(x) = cyi(x) + caya(x)

is also a solution of Equation 2.

[3] Theorem If y;(x) and y,(x) are both solutions of the linear homogeneous equa-

Proof Since y; and y, are solutions of Equation 2, we have
P(x)y!" + Q(x)yi + R(x)y1 =0
and P(x)y? + Q(x)y5 + R(x)y, = 0

Therefore, using the basic rules for differentiation, we have

P(x)y" + Q(x)y" + R(x)y

= P(x)(c1y1 + c2y)” + O(x)(ciyi + caya)’ + R(x)(ciyr + cayn)
= P(x)(ciy!" + cayy) + Q(x)(c1yi + covh) + R(x)(ciyr + cayn)
alP)y + Q(x)yi + Ryl + o[P(x)ys + O(x)y; + R(x)y»]

61(0) + CQ(O) = 0

Thus, y = ¢1y; + ¢2y» is a solution of Equation 2.

The other fact we need is given by the following theorem, which is proved in more
advanced courses. It says that the general solution is a linear combination of two linearly
independent solutions y, and y,. This means that neither y;, nor y, is a constant multiple
of the other. For instance, the functions f(x) = x* and g(x) = 5x? are linearly dependent,

but f(x) = e* and g(x) = xe" are linearly independent.
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[4] Theorem If y, and y, are linearly independent solutions of Equation 2, and P(x)
is never 0, then the general solution is given by

y(x) = ciyi(x) + crya(x)

where ¢, and ¢, are arbitrary constants.

Theorem 4 is very useful because it says that if we know rwo particular linearly inde-
pendent solutions, then we know every solution.

In general, it is not easy to discover particular solutions to a second-order linear equa-
tion. But it is always possible to do so if the coefficient functions P, Q, and R are constant
functions, that is, if the differential equation has the form

[5] ay" + by +cy=0

where a, b, and ¢ are constants and a # 0.

It’s not hard to think of some likely candidates for particular solutions of Equation 5 if
we state the equation verbally. We are looking for a function y such that a constant times
its second derivative y” plus another constant times y’ plus a third constant times y is equal
to 0. We know that the exponential function y = e™ (where r is a constant) has the prop-
erty that its derivative is a constant multiple of itself: y' = re’*. Furthermore, y" = r’e"™.

If we substitute these expressions into Equation 5, we see that y = e is a solution if
ar’e™ + bre™ + ce™ =0
or (ar? + br + c)e™™ =0

But ™ is never 0. Thus, y = e'" is a solution of Equation 5 if r is a root of the equation

[6] ar* +br+c¢=0

Equation 6 is called the auxiliary equation (or characteristic equation) of the differen-
tial equation ay” + by’ + ¢y = 0. Notice that it is an algebraic equation that is obtained
from the differential equation by replacing y” by r% y’ by r, and y by 1.

Sometimes the roots r; and r, of the auxiliary equation can be found by factoring. In
other cases they are found by using the quadratic formula:

b+ T dac —b — BT~ dac

ry =

2a 2a

T

We distinguish three cases according to the sign of the discriminant 5? — 4ac.

(ASEI o b* — dac > 0

In this case the roots r; and r, of the auxiliary equation are real and distinct, so y; = e"'*
and y, = e"" are two linearly independent solutions of Equation 5. (Note that ¢"*" is not a
constant multiple of e"'*.) Therefore, by Theorem 4, we have the following fact.

If the roots r; and r, of the auxiliary equation ar? + br + ¢ = 0 are real and
unequal, then the general solution of ay” + by’ + ¢y = Qs

y=ce" + ce™*
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== |n Figure 1 the graphs of the basic solutions
f(x) = e*and g(x) = e of the differential
equation in Example 1 are shown in black and
red, respectively. Some of the other solutions,
linear combinations of f and g, are shown

in blue.

FIGURE 1
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EXAMPLE 1 Solve the equation y” + y" — 6y = 0.
SOLUTION The auxiliary equation is
rP+r—6=F—-2(r+3)=0

whose roots are r = 2, —3. Therefore, by (8) the general solution of the given differen-
tial equation is
y=rcie™ + e ™

We could verify that this is indeed a solution by differentiating and substituting into the

differential equation. [ |
d’y dy
EXAMPLE 2 Solve 3 I + E —y=0.

SOLUTION To solve the auxiliary equation 37> + r — 1 = 0 we use the quadratic
formula:

-1+ 13
6

r =

Since the roots are real and distinct, the general solution is

y = cie TV o p(F1mVIS .

(ASENl © b* — d4ac = 0
In this case r; = r,; that is, the roots of the auxiliary equation are real and equal. Let’s
denote by r the common value of r; and r,. Then, from Equations 7, we have

3 r=

- so 2ar+b=0
2a

We know that y, = e'* is one solution of Equation 5. We now verify that y, = xe™ is also
a solution:

ayy + bys + ¢y, = a2re’™ + r’xe’™) + b(e'™ + rxe™) + cxe™
= (2ar + b)e™ + (ar? + br + c)xe™
=0(e™) + 0(xe™) =0
The first term is O by Equations 9; the second term is 0 because r is a root of the auxiliary

equation. Since y; = e and y, = xe" are linearly independent solutions, Theorem 4 pro-
vides us with the general solution.

If the auxiliary equation ar® + br + ¢ = 0 has only one real root r, then the
general solution of ay” + by’ + cy =0 s

y=cie™ + crxe™

EXAMPLE 3 Solve the equation 4y” + 12y’ + 9y = 0.

SOLUTION The auxiliary equation 47> + 12r + 9 = 0 can be factored as

2r+3)=0
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= = Figure 2 shows the basic solutions so the only root is » = —3. By (10) the general solution is
f(x) = e ¥2and g(x) = xe > in
Example 3 and some other members of the _ ~3x/2 —3x/2
family of solutions. Notice that all of them y cie T Coxe u
approach 0 as x — .
(ASENN = b* — d4ac < 0
frg 8 In this case the roots r; and r, of the auxiliary equation are complex numbers. (See
f Additional Topics: Complex Numbers for information about complex numbers.) We can
Sftyg write
f+59
n=a-+i =a—1i
5 5 = a + i rh=aoa—Iif
ftg g—f
9 where o« and B are real numbers. [In fact, « = —b/(2a), B = /4ac — b?*/(2a).] Then,
s ’ using Euler’s equation
FIGURE 2 e =cos 0+ isin @
from Additional Topics: Complex Numbers, we write the solution of the differential equa-
tion as
y — Clenx + Czerzx — Cle(a+iﬁ)x + Cze(afiﬁ)x
= Cie**(cos Bx + isin Bx) + Cre**(cos Bx — isin Bx)
= e“[(C, + Cy)cos Bx + i(C; — C,) sin Bx]
= ¢"(c1 cos Bx + ¢y sin Bx)
where ¢; = Ci + Gy, c; = i(C; — C). This gives all solutions (real or complex) of the dif-
ferential equation. The solutions are real when the constants ¢, and ¢, are real. We sum-
marize the discussion as follows.
[11] If the roots of the auxiliary equation ar? + br + ¢ = 0 are the complex num-
bers r, = a + if, r» = a — if3, then the general solution of ay” + by’ + cy =0
is
y = e*(c1cos Bx + ¢, sin Bx)
== Figure 3 shows the graphs of the solu- EXAMPLE 4 Solve the equation y” — 6y’ + 13y = 0.
tions in Example 4, f(x) = e** cos 2x and . o )
g(x) = 3 sin 2u, together with some linear SOLUTION The auxiliary equation is > — 6r + 13 = 0. By the quadratic formula, the
combinations. All solutions approach 0 roots are
asx 6+.36—-52 6*+.-16 3 4o
r= = =3 *2
3 2 2
ftg g
f By (11) the general solution of the differential equation is
-9
-3 2 y = e¥(c; cos 2x + ¢, sin 2x) ]
INITIAL-VALUE AND BOUNDARY-VALUE PROBLEMS
-3

An initial-value problem for the second-order Equation 1 or 2 consists of finding a solu-

FIGURE 3 tion y of the differential equation that also satisfies initial conditions of the form

y(x0) = yo y'(x0) =y

where y, and y, are given constants. If P, O, R, and G are continuous on an interval and
P(x) # 0 there, then a theorem found in more advanced books guarantees the existence
and uniqueness of a solution to this initial-value problem. Examples 5 and 6 illustrate the
technique for solving such a problem.
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== Figure 4 shows the graph of the solution of
the initial-value problem in Example 5. Compare
with Figure 1.

20

-2 2

FIGURE 4

= = The solution to Example 6 is graphed in
Figure 5. It appears to be a shifted sine curve
and, indeed, you can verify that another way of
writing the solution is

y =13 sin(x + ¢) where tan p =2

5

AN AN
VIRV,

=5

-2 2

FIGURE 5
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EXAMPLE 5 Solve the initial-value problem
y'+y —6y=0 y(0) =1 y'(0) =0

SOLUTION From Example 1 we know that the general solution of the differential equa-
tion is

y(x) = cie® + cre™™
Differentiating this solution, we get

y(x) = 2cie® — 3ce ™

To satisfy the initial conditions we require that

12] y0)=c +c=1

3] y'(0) =2¢c; — 3c,=0
From (13) we have ¢, = 3¢, and so (12) gives

c.+§cl=l c.=% cz=%
Thus, the required solution of the initial-value problem is
y=te it
EXAMPLE 6 Solve the initial-value problem
y'+y=0 y(0) =2 y'(0) =3

SOLUTION The auxiliary equation is r>+ 1=0,orr>= —1, whose roots are *i. Thus
a =0, 8 =1, and since ¢* = 1, the general solution is

y(x) = c¢1cos x + ¢a8in x
Since y'(x) = —cisinx + cacos x
the initial conditions become
vy0)=c =2 y(0)=c =3
Therefore, the solution of the initial-value problem is

y(x) =2cos x + 3sinx [ ]

A boundary-value problem for Equation 1 consists of finding a solution y of the dif-
ferential equation that also satisfies boundary conditions of the form

y(x0) = yo y(x1) =y

In contrast with the situation for initial-value problems, a boundary-value problem does
not always have a solution.

EXAMPLE 7 Solve the boundary-value problem
Y2y +y=0 y(0) =1 y(1) =3
SOLUTION The auxiliary equation is
rPP+2r+1=0 or r+17*=0
whose only root is r = —1. Therefore, the general solution is

X

y(x) = cie™™ + crxe”
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== Figure 6 shows the graph of the solution of The boundary conditions are satisfied if
the boundary-value problem in Example 7.

y(0) =c =1
5
y(1)=cie' + e’ =3
N The first condition gives ¢; = 1, so the second condition becomes
-1 5
e ' +ce'=3
Solving this equation for ¢, by first multiplying through by e, we get
-5 1+ c,=3e SO c=3e—1
FIGURE 6 Thus, the solution of the boundary-value problem is
y=¢e "+ Be — lxe™* [ ]
Summary: Solutions of ay” + by’ +¢ =0
Roots of ar? + br + ¢ =0 General solution
r1, 1> real and distinct y=ce" + ce™”
rn=rn=r y=rce”" + cxe’™
r1, r» complex: a * i3 y = e“(c; cos Bx + ¢ sin Bx)
EXERCISES
- - - 20. 2y" + 5y —3y=0, y0) =1, y(©0) =4
[A] Click here for answers. [s] Click here for solutions. Y Y Y Y Y
21. y" + 16y =0, y(w/4) = =3, y(w/4) =4
1-13 m Solve the differential equation. 22. y' =2y +5y=0, y(m) =0, y(m)=2
Ly —6y +8y =0 2.y —4y +8y=0 23y + 2y +2y=0, y(0)=2, y(0)=1
3.y + 8y +4ly=0 4.2y =y —y=0 4.y + 12y + 36y =0, y(1)=0, y(1)=1
5.y =2y +y=0 6. 3y" =5y
1.4 +y=0 8. 16y" + 24y’ + 9y =0 25-32 m Solve the boundary-value problem, if possible.
9' 4y// + yl — 0 ]0. 9y// + 4y — O 25' 4y + y = 07 y(o) = 35 )’(77') = _4
. Py o dy Y ]2 dZy—6ﬂ+4 Y 26. y' +2y' =0, y0) =1, y(1)=2
Car Tar Y “ar Va7 7.y =3y +2y=0, y(0) =1, y3)=0
dy  d 28. )" + 100y = =2 =
1. dthr%er:O 8. )"+ 100y =0, y(0)=2, y(m=35

2. y" — 6y +25y=0, y0) =1, y(m)=2

30. ' =6y +9y=0, y(0)=1, y(1)=0
g 14-16 m Graph the two basic solutions of the differential equation

and several other solutions. What features do the solutions have in 3.y + 4y + 13y =0, y(0)=2, y(m/2)=1
common? 32. 9y" — 18y’ + 10y =0, y(0) =0, y(m) =1
d? d d? d . . . . . . . . . .
62 -2 90 15 22— 46y =0
dx dx dx dx 33. Let L be a nonzero real number.
d?y dy (a) Show that the boundary-value problem y” + Ay = 0,
16. d® 2 dr +5y=0 y(0) = 0, y(L) = 0 has only the trivial solution y = 0 for

the cases A = 0 and A < 0.
(b) For the case A > 0, find the values of A for which this prob-

17-24 m Solve the initial-value problem. lem has a nontrivial solution and give the corresponding
17. 2y" + 5y + 3y =0, y(0) =3, y'(0)=—4 solution.
18. v +3y=0, y0)=1, y(0) =3 34. If a, b, and c are all positive constants and y(x) is a solution

of the differential equation ay” + by" + ¢y = 0, show that
19. 4y" —4y" +y=0, y0) =1, y(0)=-15 lim, . y(x) = 0.
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[s] Click here for solutions.

. y=cie™ + ce™ 3. y = ¢ *(c, cos 5x + ¢, sin 5x)

5.y =cie* + caxe” 7. y = ¢ cos(x/2) + ¢, sin(x/2)
9. y=c + ce* 1. y= creH2r 4 o o120

13. y = ¢ *[c, cos(v/31/2) + ¢, sin(v/31/2)]

15. 40 g

-0.2

—40

All solutions approach 0 as x — — and approach = as x — .

17.
19.
21.
23.

25.

27.

29.
31
33.

y =23 + ¢7*
y =e"? — 2xe*/?

y =3 cos4x — sin4x

y = e *(2cosx + 3sinx)
y=3 cos(%x) -4 sin(%x)
ex+3 er
= +
Y e’ — 1 1 —¢?
No solution

y = e (2 cos 3x — €7 sin 3x)

(b) A = n’a@*/L* n a positive integer; y = C sin(nmwx/L)
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SOLUTIONS

1.

1.

13.

15.

17.

19.

21.

23.

25.

21.

. The auxiliary equation is 47 4 1

The auxiliary equationis 72 —6r +8 =0 = (r—4)(r—2)=0 = r =4, r = 2. Then by (8) the general

solution is y = c1e*® + coe?®.

. The auxiliary equation is 72 + 8 +41 =0 = 7 = —4 % 54. Then by (11) the general solution is

y=e 1 cos bz + ¢z sin bz).

. The auxiliary equationis 72> —2r +1 = (r —1)> =0 = ¢ = 1. Then by (10), the general solution is

y = ci1e” + coxe”.

0 = r=d42i,50y=cicos(3z)+czsin(3z).

. The auxiliary equationis 4r*> +r =r(4r+1)=0 = r=0,7r= —i, S0y =c1 4 coe /4

The auxiliary equationis 72 — 2r — 1 =0 = 7 =1=++v2, 50y = c1e(TV2! 4 e(1-V2)1,

The auxiliary equationis 7> +r +1=0 = r= —% + @z’, soy = e t/? [cl cos(@t) + c2 sin(@t)]

> —8r +16 = (r —4)> =0soy = c1e*® + cawe’®. 40 g

The graphs are all asymptotic to the x-axis as x — —o0, [ yd / f

and as ¢ — oo the solutions tend to £o0. 02 { ____,—;'/ ’ !
—40

2r? +5r+3=(2r+3)(r+1) =0,s0r = —2,r = —1 and the general solution is y = c1e73%/2 4 ce™. Then
y(0)=3 = c+ce=3andy’ (0)=—-4 = —3¢; —cy=—4,50c1 =2andcy = 1. Thus the solution to

the initial-value problem is y = 2¢ ~3%/2 4 ¢ 2.

4r? —4r+1=(2r—1)>=0 = r = 1 and the general solution is y = c1e®/? + cowe®/2. Then y(0) = 1
= c=1landy (0)=-1.5 = ic1+4c2=—1.5,50c2 = —2and the solution to the initial-value problem is

y = e*/? — 2ze/2.

2416 =0 = = =+4i and the general solution is y = €°%(c1 cos 4z + c2 sin 4x) = ¢; cos 4x + co sin 4z.
Theny(%) =-3 = —a=-3 = aa :3andy/(§) =4 = —4cp=4 = cp=—1,s0the

solution to the initial-value problem is y = 3 cos 4z — sin 4.

r>4+2r+2=0 = 7= —141and the general solution is y = e %(c1 cosz + ca2sinz). Then 2 = y(0) = ¢,

and1 =y (0) =c2 —c1 = c2 = 3 and the solution to the initial-value problem is y = e~ *(2 cos z + 3sin ).

4241=0 = r= i%i and the general solution is y = ¢1 cos(%z) + c2 sin(%:c). Then 3 = y(0) = ¢1 and

—4 = y(m) = ¢, so the solution of the boundary-value problem is y = 3COS(%I) - 4sin(%1ﬁ).

> —3r+2=(r—2)(r—1)=0 = r=1,r =2 and the general solution is y = c1e” 4 c2¢>*. Then

1=y(0) =c1+coand 0 = y(3) = c1e® + c2e® so co = 1/(1 — €3) and ¢; = €3 /(e® — 1). The solution of the

x+3 2x

. e e
boundary-value problem is y = p— + 1o
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29. 72 —6r+25=0 = r =3+ 4iand the general solution is y = €3%(c1 cos4x + ca sin 4z). But 1 = y(0) = 1

and 2 = y(7) = c1e®™ = 1 = 2/e3", so there is no solution.

3. 724+ 4r+13=0 = 7= —2+ 3iand the general solution is y = e~2*(c1 cos 3x + c2 sin 3z). But
2=y(0) =cirand 1 = y(F) = e "(—cz), so the solution to the boundary-value problem is
y = e 2"(2cos 3z — €™ sin 3z).
33 (a) Case I(A=0): y”" 4+ y=0 = 9" = 0which has an auxiliary equationr? =0 = r=0 =
y =c1 + cox where y(0) = 0and y(L) = 0. Thus,0 = y(0) = crand0 = y(L) = 2L = ¢1 =c2=0.
Thus, y = 0.
Case 2 (A < 0): 3" + Ay = 0 has auxiliary equation r?> = —\ = r = ++4/—\ (distinct and real since
A<0) = y=cieV " + eV where y(0) =0and y(L) = 0. Thus, 0 = y(0) = ¢1 + ¢c2 (x)and
0=y(L) = creV ™ e VAL (1),
Multiplying () by eV=>L and subtracting () gives c2 (e‘/__’\L — e VAL ) =0 = c¢2 =0and thus
c1 = 0 from (x). Thus, y = 0 for the cases A = 0 and A < 0.
(b) y"" 4+ Ay = 0 has an auxiliary equation 7> + A =0 = r=4ivVA = y=cicosvVAz+casinvAiz
where y(0) = 0 and y(L) = 0. Thus, 0 = y(0) = ¢1 and 0 = y(L) = c2 sin /AL since ¢; = 0. Since we

cannot have a trivial solution, ¢z # 0 and thus sinv/AL =0 = /X L = nx where n is an integer

= A =n?7%/L? and y = cz sin(nmx/L) where n is an integer.





